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Abstract 

While most previous work in planning manipulation tasks has relied on the 
assumption of quasi-static conditions, there can be situations where the quasi- 
static assumption may not hold, and the assumptions about the environment 
must be relaxed. This is true, for example, in a situation where objects are 
making and breaking contact at high enough velocities that  contact dynamics 
play a significant effect in the motion of the colliding objects. 
There has been some work studying models of collision, in particular for the 
design and analysis of systems with intermittent constraints, and for the design 
of juggling robots. Our work extends previous studies in planar juggling to  the 
case of a polygonal object, using the model of rigid body impulsive collision. 
Simulations verify the results of a linearieed analysis. 
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Nationd Science Foundation, grant GER-9255691 
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1 Motivation 
Most previous strategies for planning manipulation tasks have relied on an as- 
sumption of quasi-static mechanics in the analysis of the physical system. This 
constrains the plans to  situations that are slow moving, and in which contact 
dynamics can be neglected. 

One can imagine situations these assumptions do not hold or when a model 
of the contact dynamics would be useful. In catching an already moving or 
accelerating object, for instance, the inertial properties of the object affect the 
motion which results from the applied forces of collision. Knowledge of the 
magnitudes as well as the direction of forces and velocities becomes important. 
Juggling and table tennis are two such domains that have been explored in 
robotics. Catching of tossed objects is a related task in which such knowledge 
is useful. 

Another domain in which such a model may be useful is in the manipulation 
of objects by sliding on a frictional support surface. Much work has been done 
in the analysis of quasistatic pushing in the presence of friction ([13], [12], [14]). 
[8] shows that the motion of an object on a frictional support surface can be 
determined if the pressure distribution of the object is known. [12] and [14] 
analyze this situation when the pressure distribution is not known. The analysis 
of [8] implies that for large enough applied forces, the motion of the object is 
essentially given by the acceleration due to  the applied forces. Since the impact 
model assumes that at the moment of collision the impact force “swamps out” 
all other forces, the use of controlled collision can be useful in situations where 
the pressure distribution is not completely known, particularly if the support 
friction is fairly low. 

Some work has been done to study models of dynamic collision for use in 
robotic domains. [15] designed a dynamically stable hopping robot, modelling 
the bounce as a spring and damper system with perfectly inelastic collision. 
This system was further analyzed by [9]. [I] designed a ping-pong playing robot 
which used a simple model of point-mass collision to predict the motion of the 
ball after striking. 1191 attempts to characterize the qualitative behavior change 
in the motion of objects upon collision. [ZO] simulates and analyzes systems 
with intermittent constraints, and uses models of those systems in planning 
manipulation tasks. [5] analyse and designs a planar puck juggling system. 
[16] extends this to the 3-D case. This work continues those studies, extending 
the planar puck juggling work of [5] to objects with extent and orientation. The 
intent is to evaluate the utility of the impact model for manipulation planning. 

2 The Problem 
We have a planar object on a frictionless inclined plane, pulled by the influence 
of gravity down to a movable “table”, against which it bounces with coefficient 
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Figure 1: Basic System Geometry 

of restitution e. The coefficient of friction between table and object is p .  The 
contact between the table and the object is a point contact, at a known point 
on the object. We assume an impulsive impact model as described by [17] and 
used by [19], (201. 

The object is parameterized by ( z ,y ,pB) ,  where (z,y) are the coordinates 
of the center of gravity of the object, 0 is the orientation of the object, and 
p is the radius of gyration of the object ([6]). The desired orientation of the 
object will be set to B = 0. For simplicity we can abstract away the dimensions 
of the actual object, and think of the object as a rod, whose center of gravity 
is the center of gravity of the object, located at length I from the from the 
contact point’ (See figure 1). We want to have the object bouncing to a fixed 
height while maintaining the desired orientation. Ideally, we would prefer the 
bouncing to occur in a fixed (impact) position in the iz yi plane, but we will 
initially disregard this constraint, and study the simpler, lower dimensional 
unconstrained case. 

In this examination, we will also 88sume perfect sensing and perfect control 
of the motion of the table, for the purpose of examining the question of whether 
the desired behavior is achievable in theory, before exploring problems in actual 
implementation. 

2.1 The Lossless Case 

We first look at the simplest case, the case e = 1 , p  = 0. In this case, the 
equation describing the change in velocity due to an impulsive collision can be 

’This of c u m  ignores the question of whether or not we CM actually s t r i k e  the object 
deakd at exactly the point desired, BO in deet we are arsuming the object is at the 

“pointy enough” at the contact point. 
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written in terms of t h e  preimpact velocity Y -  as 

Av = -2(nTv-)n 

(see Appendix A), where 

- sin a 
(2) 

P n =  d p a  + IZsin* p [ :::zp ] . 
As shown in Figure 1, a is the angle that the table makes with the horizontal 

in the counterclockwise direction, 1 is the length from the center of gravity to 
the contact point, and p is the angle that I makes with the table normal in the 
counterclockwise direction. Note that (3 = 0 - a. 

Equation (1) simply says that in configuration space, the object upon im- 
pact will reverse its normal velocity component while its tangential component 
remains unchanged. Define the constraint surface to be the set of configurations 
for which the object touches the table without penetration for a given table ori- 
entation, a (see 1111 for a discussion of configuration space). Then according to 
equation ( l ) ,  the object will reflect about the normal to the constraint surface. 
This is a fairly intuitive extenaion of the usual example of a perfectly elastic, 
frictionless point ma94 impact against a flat barrier. 

In order to get some idea of possible solutions to our original problem, we 
can first look at the ca4e of this point mass bouncing against our table. If the 
ball makes impact with a horizontal (a = 0) table with avelocity vector at angle 
0 = 0 with the vertical, it will leave after impact with angle -8, fall under the 
influence of gravity, and then (if the table remains at the same height) strike the 
table again at angle 8. We would like to control the strikes so that 8 eventually 
g o a  to zero, and the ball bounces straight up and down. One way to do this is 
tilt the table while simultaneously moving it so that impact always occurs at a 
given height in the vertical plane, say y = 0. 

Suppose, as in figure 3, that  the ball first makes impact with velocity at 
angle 0- to the vertical. If the table is tilted at angle a at impact, the ball will 
leave the table at angle -0 = - ( O -  -a), which is equivalent to angle -0- +2a 
to the vertical. Hence, on the next impact, it will strike with the negative of 
that angle with respect to the vertical. This gives the system equation 

8,,1 = 0, - 2a, (3) 

where 0, gives the velocity angle with respect to the vertical just before the the 
n th  impact. If we choose a to be proportional to 0, say a = KO, the recurrence 
relation becomes 

8.+1 = (1 - 2K)O" 

e,, = (1  - 2 K ) n 8 0 .  

(4) 

( 5 )  
or 
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Figure 2: Bouncing Ball example 

This will eventually drive the system to ita equilibrium state, 8 = 0, a long 
as 11 - 261 < 1, or 0 < IE < 1. We can try to extend this strategy to  the rigid 
body case. 

2.1.1 System Equations 

We can rewrite equation 1 in the form 

v+ = (I - 2;;lT)v- 

where v- is the velocity vector immediately before impact, v+ is the velocity 
immediately after impact, and I is the identity matrix. After impact, during 
the ballist.ic phase, we have the equations 

where the subscripted velocities are the velocitiea at the beginning of the ballistic 
phase, i .e .  the velocities given by v+.  G is the acceleration of gravity. The next 
impact occurs at ycontact = 0, when the contact condition 

is satisfied. The time until next impact is a function of Bo, Bo, and y o ,  which 
in turn are functions of the configuration just prior to impact, (O-,v-). Let 
the configuration at impact n be given by xn = (PO, i, y,@)", and call the time 
of next impact r ( x n ) .  Then the impact equations plus the contact condition 
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Approaching First Impact Bounce 

Approaching second Impact 

Figure 3: Ball bouncing against tilted table 
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describe a nonlinear recurrence relation, 

X"+l = f(a,xn,+n)). (9) 

If we set a = KB, then f is completely a function of x,, and we can try 
to find a fixed point XI.  By inspection of (6), (7), and ( S ) ,  we can see that 
(6' = # = 0 , i  = fl,i = z*)  defines a set of fixed points, with T = -2g/G.  
Further, we know that for a lossless system that the energy at contact, am(z2 + 
$2+p202)+rnGl m e ,  is constant fromimpact toimpact, so our initial conditions 
determine the energy surface to which we are constrained. For specificity, we 
choose an equilibrium point from our set of possible fixed points to study. Since 
we would like o w  object to bounce in place horizontally, we choose x* = 0.  
Then, if we drop the object from a (center of gravity) height yo, with a initial 
velocity vector VI), the corresponding value for gP is given by 

$ = -42G(yo - 1 cos@) + voTvo. (10) 

We wish to determine the stability of the state x* = (O,O,$,O): if we start off, 
not exactly at this point, but merely near it, can we balance the object? 

2.1.2 Linearized Analysis 

Given x* = f(x*) for the recurrence relation x,+1 = f(xn), Taylor expansion 
about x* gives us 

f(x*+Sx,) = x ' + 6 ~ + 1  
= x* + J(x')6x, + h.o.t (11) 

where J(x) is the Jacobian off(.) evaluated at x. Ignoring higher order terms 
gives the approximate linear system 

b t i  zj ,T(x*)k ,  (12) 

SX, = [ ~ ( x * ) ] " ~ x o .  (13) 
or 

From the linearized system, we can try to predict certain properties of the 

The linearized system around x* is given by the system matrix 
nonlinear system in the neighborhood of x' (see Appendix B). 



which has eigenvalues A; given by 

2$*1(1 - E) + GpZ 
GpZ 

f 

If all the eigenvectors V; are distinct, then the system solution is given by 

d 

the c; being functions of the initial conditions. Clearly, in order for the solution 
to be stable, all the eigenvalues must be contained in the cloaed unit disc of the 
complex plane. Analyzing  AS,^ for different values of K gives 

K < 1 : 1A31 > 1, IA41 < 1 Unstable (17) 

(18) 
GP' 
$21 ' 

(19) 
GP2 
y.21 

1 < K < 1 + - . 

E > 1 + - : 

IA3 ,4 (  = 1 Stable 

JXsJ < 1,JX41 > 1 Unstable. 

The boundaries of the region given by (18) are special cases, because for 
those values of K not all the eigenvectors are distinct, and the analysis is more 
complicated (see Appendix C). For the region of stable K ,  (16) can be written 
in the form 

a , a , b , g , h E W  

and the initial conditions give for the constants of proportionality: 

ps0Q 
CI = 6 2 0 -  h g ,  

c2 = k, 

2bh 
e3 = 

The linear analysis predicts that in the neighborhood about t h e  equilibrium 
point, if there is any deviation from $, it will stay constant; if 6x0 = 0 and 
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Case 1 
Case 2 
Case 3 

600 = 0, then 6 z , 6 0 ,  and 66 will all oscillate about the origin at frequency g: 
with amplitudes determined by 680. These, then, are the initial conditions that 
determine the stability of XI. If either 620 or S& are nonzero, there will be a 
net x velocity, and the object will remain balanced, but travel horizontally as 
it bounces. Strictly speaking, this is not really stable, since x (which we have 
been ignoring up until now) can increase without bound. But since x* does not 
contain x, it does remain bounded. For the case n = tccr;ticol = 1 + ( C p a ) / ( $ 2 1 ) ,  
linear analysis predicts instability of the system (see Appendix C). 

00 [rad] 00 [rad/s] YO [m] JC ncriticoi 
0.3 0 0.2 1.1 1.5 
0 0.1 0.2 1.1 1.5 

0.1 0 0.2 1.55 1.5 

2.1.3 Empirical Verification 

Simulation showed that the Linear approximation predicted the stability of the 
system reasonably well for different choices of I(: the region described by (18) 
was indeed stable for small initial velocities and for angular deviations up to 
about zk0.4 radians (x 23'). When the initial impact angle was small, about 
f0.15 radians (x 8.6O) or less, the system was stable all the way up to and 
including IC = xcril;co,. When the initial impact angle was about in the range 
f(0.15 to 0.4) radians, IE had to be much closer to unity for stability. The II = 1 
case is always unstable, but the n = nmiIica, case can be stable, despite the 
linear prediction. Note for comparison that the range h0.5 radians (e 30°), is 
the range over which the linear approximation sin x rn x holds. 

All examples shown are for simulations of an ishsceles triangle of uniform 
masS distribution, 10 centimeters wide at the base, and 20 centimeters high. 
The radius of gyration about the center of gravity for this triangle is about 
9.428 centimeters. 

The figures for cases 1 and 2, which were stable, show projections of the 
system orbit in the < 0 6 > plane (0 is on the horizontal axis) andthe projection 
in the < 2: y > plane. Notice in Figures 5 and 6 that the < 8, 0 > projection 
is centered about the origin in both cases, showing that 0 and 8 oscillate about 
zero. In case 1 (Figure 5),  where there were no initial velocities (when the 
object was dropped), z is also centered about the origin, and j r  is bounded in 
the neighborhood of &, the y-velocity at first impact. In case 2 (Figure 6), 
where there was some initial angular rotation, x is no longer centered about 
aero.,Case 3 (Figure 7), where n > tcElitiC.r, was unstable, and the curve in the 
< 0 0 > plane eventually goes unbounded. 
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Figure 4 Simulated system 
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Figure 6: Lossless case 2 with eo = Orad,& = 0.2rad/s,n = 1.1 

2.2 Extensions to More General Cases 
We can extend the above analysis in order to generalize the lossleas case 

2.2.1 Inelastic collision 

For the case e # 1 we can simulate the lossless case by giving velocity to the 
table; if we assume that massi.bf. B massobject, then 

v+ = (I - (1 + e ) G T ) v -  + (1  + e)nnTvi.bre (24) 

(see Appendix A) and viable remains unchanged due to  our assumption about 
the relative masses. If we set 

1 - e  
l + e  Vioble  = -- v-> (25) 

then (24) reduces to the equation for the lossless case. This choice of Vt&. can 
be thought of as having the table tracking the orientation of the object and the 
velocity of the contact point, and striking the object with the table oriented at 
angle cr, and moving in its normal direction at the appropriate speed. This can 
be seen by noting that 

XCDRi.d = Z+IOcch?8 

Ccont.Ci = Y + lesine, (26) 
when measured in the global frame (corresponding to m = 0). Then another 
choice for Vtadlc that  will give the same system equations as (25) is 
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Figure 7: Unstable case: I( > ~ ~ ~ i ~ i ~ . ~  
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0.1 0.2 0.25 -1.27 1.1 1.28 0.165 1.73 

‘hble 2: Cases simulated for system with energy feedback. e = 0.5 

2.2.2 Energy Feedback 

If in addition to having the object bounce straight up and down, one also wanted 
the object to bounce to a specific (center of gravity) height, y*,  the associated 
(unit mass) energy level 9- = Gy’ can be used as an additional feedback term. 
As in [5], we can use the feedback law 

Vl.m = - [e + m(V - 911 Vconlod, 

(28) 7“ = Gy’ 
= GI+$$2,  at impact 

9 = Glcos8+$b2 at impact. 

For stability, K E  should be in the range 0 < K E  < & = ~ C E , , , ~ ~  (151). 
still is set to KO, and the new critical value for K ia now 

The eigenvectors and eigenvalues of the linearized system are essentially the 
same (for 0 < K < ~ ~ ~ ~ i ~ i ~ ~ i ) ,  except the eigenvalue corresponding to the eigen- 
vector [O 0 1 0IT (which is the eigenvector corresponding to 6y) is now given by 
the value (1  - &) < 1, reflecting the linearized prediction that the devia- 
tion in y goes to zero, :.e. that the system will converge to the correct energy 
surface’. Experiments confirm that for low values of K E  (about O.ln~,.,) the 
energy does indeed converge to the oorrect level (as seen in Figures 8 and 9 for 
cases 4 and 5 ) ,  and then the behavior of the system is similar to the Imlesa case. 
For values of K E  much higher than O . ~ K E , ~ ~ ,  the system is generally unstable. 

2.2.3 Friction 

If we remove the assumption that ptoaze = 0, the impact equations become 
nonlinear, reflecting the nonlinearity of Coulomb friction. Although the analytic 
approach becomes more difficult, empirical studies for various values of p found 
this case to  be unstable when using the table tilt rule explained above, somewhat 

2Strinly speaking, because this is no Longer a loruless system, the fact that three of the 
eigenvalue M on the unit cirde m c m  we m o t  use the linearized system to rigornusly 
pmve anything about the nonlinear system (se Appendix BJ, although 151 dow pment some 
complicated stability arguments for the point mods c a e .  We can SLO use idmition, our 
knowledge about the lossless case, and empirical evidence to help us. 
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Figure 8: Case 4:& = 0.3rad, e = 0.5, K = 1.1, XE = 0.165 
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Figure 9: Case 5: BO = O.lrad/s,e = 0 . 5 , ~  = 1 . 1 , ~ ~  = 0.165 
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Figure 10: Tangential and Normal Impulses 

contrary to expectations. Apparently, the law cannot compensate for the energy 
lost in the tangential direction, and in fact often added an impulse in a direction 
that increased 0,  contributing to the tipover of the object. This can be seen by 
looking at the equation for the moment due to the impulse (see figure (10)) 

M = PnIs inp+Pi luw@ 

= P,lsinp+pP,sgn - v d c a s p  (30) 

for the case of sliding contact. Here Pt,  P,, are the tangential and normal com- 
ponents of the contact, and vtc is the tangential contxt  velocity. For small 
angles, sin@ % p and m p  w 1 - ,@’ >> p, so when p is smaller than p ,  the 
moment due to frictional forces can potentially cancel out the desired moment, 
and cause the object to rotate in the wrong direction. This problem can be com- 
pensated for somewhat by increasing 6, which in general causes 0 to be larger. 
Increasing 6~ also prolongs the time that the object can be kept upright, but 
the tangential forces increase the horizontal motionof the object, and hence the 
energy disaipated to friction, and eventually the object falls over. This difficulty 
can probably he circumvented by striking the object at an angle that minimiees 
tangential velocity, or by striking at a different place. Neither of these options 
has been explored as yet, since both apparently require that more attention be 
paid to the actual dimensions of the object. 

2.2.4 Imperfect Sensing and Control 

Although the system has only been simulated, not actually built, an attempt 
was made to approximate imperfections in sensing and control by adding some 
Gaussian noise to the calculation of impact timeused by the table. This changes 
the angle and velocity of the table at impact time, a8 well as the y-height at 
which contact is made. Zero meangaussian noise with astandard deviation of 10 
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Figure 11: Case 1 with noise 

ms., which is about an order of magnitude less than the time between collisions, 
was used. Although the motion of the object with noise added appears much 
less smooth, the system remains stable in a similar range of initial conditions 
as the noiseless case. Cases 1 and 4 were reairnulated, this time with noise, and 
shown in Figures 11 and 12. 
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Figure 12: Case 4 with noise 
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3 Conclusions 
The experiments show that,  under ideal conditions, control of the object is 
theoretically possible using knowledge of t,he collision parameters. The biggest 
problems are, of course, dealing with friction and setting up the necessary sens- 
ing and control. Although indications are that stability can be maintained for 
reasonably accurate robot and sensors, handling friction will be necessary before 
this scheme can be considered feasible. 

In terms of applicability to  other domains, the results may also be useful 
in the dual problem of planning the acquisition of a stationary object with an 
accelerating hand, or in catching. For these tasks, we consider the desired stable 
state to be zero relative velocity (and distance) between the object and the robot 
hand. Then we would like to  plan the movementa of the hand so that the object 
does not fall or bounce away from the hand, but instead eventually settles there. 
Work on this is underway. 

A Appendix: Impact Dynamics 
Following [17), the impulse equations for a body of mass m colliding with point 
contact against a barrier (where it is assumed that mborrier >> m) are given 
by 

m(w - vto) = Pt 
m(un - vno) = Pn (31) 
mp*(w-wo) = P, = p t I c o s ~ + ~ . / s i n ~  

Here, vt is the relative velocity of the body tangential to the contact normal, 
and vn is the component normal to the contact. The subscript 0 designates 
initial velocity. Pt and P, are the components of the impulse in the tangential 
and normal directions, respectively. The velocity of the contact point is given 
by 

V l ,  = ut + Iw cosp 
vnc = v,, + iwsinp 

As in Figure 1, P is the angle of the line from the center of gravity of the object 
to the con tx t  point with respect to the contact normal, in the couuterc1od;wise 
direction. 

Combining (31) with (32) gives us  
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Newton’s model for impact (see [17], [19], or [4]) divides the (normal) impulse 
into two parts, compreasiou, when the colliding objects are moving into each 
other, and restitution, when the objects move away from each other. Newton’s 
hypothesis is that  the impulse of restitution and the impulse of compression 
are in the ratio e. We define Pno as the impulse at full compression: that is, 
when vnC = 0. This assumption, plus the assumption of no friction give us the 
expressions 

Pt = 0; P,, = (1 + e)P,o. (34) 

Substituting (34) into (33) gives 

If now we assume (again following Figure 1) that the collision reference frame 
is oriented at angle a with respect t o  the horizontal (the 2-y frame), and 0 is 
the angle the object makes with the vertical, then f i  = 0 - LI. If we rotate (35) 
and (32) into the z-y frame, we will get (using the notation from equation (1)) 

Av=- ( l+e )nn  v , 

from which (1) follows in the lossless (e = 1) case. (24) follows as well, if we 
recall that (36) refers to relative velocity, and that the table velocity is sssumed 
unaffected by the collision. 

(36) 
- - T  - 

B Appendix: Linear and Nonlinear Systems 
Although the equations for our system are nonlinear, we might hope to gain 
same understanding of its behavior, at least about x’, by the linear approxima- 
tion. Nonlinear systems theory ([3]) tells us that if the linearized approximation 
is asymptoticallystable/unstable (in other words, ifJ’(x*) has no eigenvalues on 
the unit circle), then the nonlinear system is also ssymptotically stable/unstable. 
This would normally justify our examination of the linearized system. Unfortu- 
nately, the system under consideration here always has at least two eigenvalues 
on the unit circle, 80 we cannot use this standard argument. However, this sys- 
tem is conservative, and therefore ,j’ has determinant 1. It can be shown ([lo], 
[2]) that the following are true in this case: 

I .  If A is an eigenvalue of the system, then A‘, the complex conjugate, is also 
an eigenvalue3. 

’This is always true for a system with real matrix entries. 
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2. If A is an eigenvalue of the system, then 1/A is alm an eigenvalue 

Therefore, for a conservative system, stability is only possible if the linear 
system values are all on the unit. circle. The cwe where the eigenvalues are &I 
is even more problematic (see [Z]), but fortunately in the caae at hand, the two 
complex exponential eigenvalues seem to be the critical values to examine. 

C Appendix: The case K = ~ ~ ~ i f ; ~ ~ l  

For the case n = ~ ~ , i ~ i ~ ~ , ,  both become 1, and the corresponding eigen- 
vectors both become of the form [ 1 ~ 3 ~ , t ’ 3 2 , 0 , ~ 3 3 ] ,  W ~ I , I J ~ ~ ,  w a  E %. This means 
that .7 is no longer diagonalizable, but contains more general Jordan blocks; in 
other words, the “generalized eigenvectors” must all satisfy either 

JVi = AiVi or JV, = AiVi + vi-1 (37) 

(1181). If we find the fourth “eigenvector” and expand our solution, we obtain 

which would appear to only be stable for a limited number of initial conditions, 
at best. However, this case s e e m  to be fairly stable in simulation. 
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